3D Bioplotter Research Papers

Displaying all papers about in-vivo (rabbit) (19 results)

3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration

Bioactive Materials 2021 Volume 6, Issue 10, Pages 3396-3410

Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics. However, most hydrogels offer limited cell growth and tissue formation ability due to their submicron- or nano-sized gel networks, which restrict the supply of oxygen, nutrients and inhibit the proliferation and differentiation of encapsulated cells. In recent years, 3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds. In this study, we fabricated a macroporous hydrogel scaffold through horseradish peroxidase (HRP)-mediated crosslinking of silk fibroin (SF) and tyramine-substituted gelatin (GT) by extrusion-based low-temperature 3D printing. Through physicochemical characterization,…

Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells

Nature Communications 2020 Volume 11, Article 2687

Injury of corpus cavernosa results in erectile dysfunction, but its treatment has been very difficult. Here we construct heparin-coated 3D-printed hydrogel scaffolds seeded with hypoxia inducible factor-1α (HIF-1α)-mutated muscle-derived stem cells (MDSCs) to develop bioengineered vascularized corpora. HIF-1α-mutated MDSCs significantly secrete various angiogenic factors in MDSCs regardless of hypoxia or normoxia. The biodegradable scaffolds, along with MDSCs, are implanted into corpus cavernosa defects in a rabbit model to show good histocompatibility with no immunological rejection, support vascularized tissue ingrowth, and promote neovascularisation to repair the defects. Evaluation of morphology, intracavernosal pressure, elasticity and shrinkage of repaired cavernous tissue prove that…

Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration

Theranostics 2020 Volume 10, Issue 11, Pages 5090-5106

Meniscus deficiency, the most common and refractory disease in human knee joints, often progresses to osteoarthritis (OA) due to abnormal biomechanical distribution and articular cartilage abrasion. However, due to its anisotropic spatial architecture, complex biomechanical microenvironment, and limited vascularity, meniscus repair remains a challenge for clinicians and researchers worldwide. In this study, we developed a 3D printing-based biomimetic and composite tissue-engineered meniscus scaffold consisting of polycaprolactone (PCL)/silk fibroin (SF) with extraordinary biomechanical properties and biocompatibility. We hypothesized that the meticulously tailored composite scaffold could enhance meniscus regeneration and cartilage protection. Methods: The physical property of the scaffold was characterized by…

Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair

International Journal of Biological Macromolecules 2020 Volume 148, Pages 153-162

With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…

The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair

International Journal of Biological Macromolecules 2019 Volume 138, Pages 79-88

This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM…

Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic‐co‐glycolic acid) Network and Bioactive Wollastonite

Advanced Healthcare Materials 2019 Volume 8, Issue 9, Article 1801325

Inefficient bone regeneration of self‐hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis‐stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic‐co‐glycolic acid) (PLGA) network to fabricate plastic CPC‐based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019 Volume 14, Article e00045

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects

Biomaterials 2018 Volume 185, Pages 219-231

While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair of articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implants. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold…

Zein regulating apatite mineralization, degradability, in vitro cells responses and in vivo osteogenesis of 3D-printed scaffold of n-MS/ZN/PCL ternary composite

RSC Advances 2018 Volume 8, Pages 18745-18756

Bioactive and degradable scaffolds of nano magnesium silicate (n-MS)/zein (ZN)/poly(caprolactone) (PCL) ternary composites were prepared by 3D-printing method. The results showed that the 3D-printed scaffolds possessed controllable pore structure, and pore morphology, pore size, porosity and pore interconnectivity of the scaffolds can be efficiently adjusted. In addition, the apatite-mineralization ability of the scaffolds in simulated body fluids was obviously improved with the increase of ZN content, in which the scaffold with 20 w% ZN (C20) possessed excellent apatite-mineralization ability. Moreover, the degradability of the scaffolds was significantly enhanced with the increase of ZN content in the scaffolds. The degradation of…

3D printing of pearl/CaSO4 composite scaffolds for bone regeneration

Journal of Materials Chemistry B 2017 Volume 6, Issue 3, Pages 499-509

The development of biomaterials with high osteogenic ability for fast osteointegration with a host bone is of great interest. In this study, pearl/CaSO4 composite scaffolds were fabricated using three-dimensional (3D) printing, followed by a hydration process. The pearl/CaSO4 scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼60%), and enhanced compressive strength. With CaSO4 scaffolds as a control, the biological properties of the pearl/CaSO4 scaffolds were evaluated in vitro and in vivo. The results showed that the pearl/CaSO4 scaffolds possessed a good apatite-forming ability and stimulated the proliferation and differentiation of rat bone mesenchymal stem cells (rBMSCs), as well as…

Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration

Biofabrication 2016 Volume 8, Number 2, 025003

Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF’s bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing…

3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy

Acta Biomaterialia 2015 Volume 16, Pages 145–155

After surgical treatment of osteoarticular tuberculosis (TB), it is necessary to fill the surgical defect with an implant, which combines the merits of osseous regeneration and local multi-drug therapy so as to avoid drug resistance and side effects. In this study, a 3D-printed macro/meso-porous composite scaffold is fabricated. High dosages of isoniazid (INH)/rifampin (RFP) anti-TB drugs are loaded into chemically modified mesoporous bioactive ceramics in advance, which are then bound with poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) through a 3D printing procedure. The composite scaffolds show greatly prolonged drug release time compared to commercial calcium phosphate scaffolds either in vitro or in vivo….

The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty

Annals of Biomedical Engineering 2015 Volume 43, Issue 9, Pages 2153-2162

The role of three-dimensional (3D) printing has expanded in diverse areas in medicine. As plastic surgery needs to fulfill the different demands from diverse individuals, the applications of tailored 3D printing will become indispensable. In this study, we evaluated the feasibility of using 3D-printed polycaprolactone (PCL) scaffold seeded with fibrin/chondrocytes as a new dorsal augmentation material for rhinoplasty. The construct was surgically implanted on the nasal dorsum in the subperiosteal plane of six rabbits. The implants were harvested 4 and 12 weeks after implantation and evaluated by gross morphological assessment, radiographic imaging, and histologic examination. The initial shape of the…

Three-dimensionally plotted MBG/PHBHHx composite scaffold for antitubercular drug delivery and tissue regeneration

Journal of Materials Science: Materials in Medicine 2015 Volume 26, Issue 102, 102ff

A suitable drug-loaded scaffold that can postoperatively release an antituberculosis drug efficiently in a lesion area and help repair a bone defect is very important in the clinical treatment of bone tuberculosis (TB). In this study, a composite drug-loaded cylindrical scaffold was prepared by using three-dimensional printing technology in combination with the mesoporous confinement range, surface chemical groups, and gradual degradation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). This achieves the slow release of a drug for as long as possible. We implanted the drug-loaded compound scaffold into New Zealand rabbits’ femur defect model to study the in vivo drug release performance and osteogenic ability….

Tissue‐Engineered Tracheal Reconstruction Using Three‐Dimensionally Printed Artificial Tracheal Graft: Preliminary Report

Artificial Organs 2014 Volume 38, Issue 6, pages E95–E105

Three-dimensional printing has come into the spotlight in the realm of tissue engineering. We intended to evaluate the plausibility of 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial tracheal defects. MSCs from rabbit bone marrow were expanded and cultured. A half-pipe-shaped 3DP polycaprolactone scaffold was coated with the MSCs seeded in fibrin. The half-pipe tracheal graft was implanted on a 10 × 10-mm artificial tracheal defect in four rabbits. Four and eight weeks after the operation, the reconstructed sites were evaluated bronchoscopically, radiologically, histologically, and functionally. None of the four rabbits showed any…

In‐vivo behavior of Si‐hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing

Journal of Biomedical Materials Research Part A 2013 Volume 101A, Issue 7, Pages 2038–2048

Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone…

A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects

Biomedical Materials 2013 Volume 8, Number 4, 045009

The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are…

Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study

The Lancet 2010 Volume 376, Issue 9739, Pages 440-448

Background A common approach for tissue regeneration is cell delivery, for example by direct transplantation of stem or progenitor cells. An alternative, by recruitment of endogenous cells, needs experimental evidence. We tested the hypothesis that the articular surface of the synovial joint can regenerate with a biological cue spatially embedded in an anatomically correct bioscaffold. Methods In this proof of concept study, the surface morphology of a rabbit proximal humeral joint was captured with laser scanning and reconstructed by computer-aided design. We fabricated an anatomically correct bioscaffold using a composite of poly-ɛ-caprolactone and hydroxyapatite. The entire articular surface of unilateral…

Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints

Cell Proliferation 2009 Volume 42, Issue 4, pages 485-497

Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints. Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated. Results:  Rapid prototyping…