3D Bioplotter Research Papers

Displaying all papers by P. Pei (5 results)

3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery

Microporous and Mesoporous Materials 2018 Volume 272, Pages 24-30

Three-dimensional (3D) porous scaffolds with sustained drug delivery are pursued for osteoarticular tuberculosis therapy after surgery. In this study, mesoporous bioactive glass/metal-organic framework (MBG/MOF) scaffolds with sustained antitubercular drug release have been fabricated by 3D printing. The results showed that the MBG/MOF scaffolds possess macropores of ca. 400 μm and enhanced compressive strength of 3–7 MPa, also exhibited good biocompatibility and apatite forming ability in vitro. Furthermore, the drug release rate and pH microenvironment of the MBG/MOF scaffolds could be controlled due to the MOF degradation. These results indicated that the 3D printed MBG/MOF scaffolds are promising for treating osteoarticular tuberculosis.

Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

Scientific Reports 2017 Volume 7, Article number: 42556

In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the…

3D printing of pearl/CaSO4 composite scaffolds for bone regeneration

Journal of Materials Chemistry B 2017 Volume 6, Issue 3, Pages 499-509

The development of biomaterials with high osteogenic ability for fast osteointegration with a host bone is of great interest. In this study, pearl/CaSO4 composite scaffolds were fabricated using three-dimensional (3D) printing, followed by a hydration process. The pearl/CaSO4 scaffolds showed uniform interconnected macropores (∼400 μm), high porosity (∼60%), and enhanced compressive strength. With CaSO4 scaffolds as a control, the biological properties of the pearl/CaSO4 scaffolds were evaluated in vitro and in vivo. The results showed that the pearl/CaSO4 scaffolds possessed a good apatite-forming ability and stimulated the proliferation and differentiation of rat bone mesenchymal stem cells (rBMSCs), as well as…

The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds

Microporous and Mesoporous Materials 2016 Volume 241, Issue 15, Pages 11–20

Development of 3D porous scaffolds with proper mechanical strength is crucial in bone tissue engineering. In this study, calcium sulfate hemihydrate (CSH) cement was functionally incorporated into mesoporous calcium silicate (MCS) through a 3D printing technique in order to improve the scaffold strength. Compared to printed MCS scaffolds, the characterizations revealed that 20% CSH incorporation had enhanced their compressive strength by 2 times via 4 weeks‘ hydration. Furthermore, CSH incorporation prevented the fast pH value rise and achieved a balanced degradation rate. SEM observations showed a good apatite formation on the surfaces of both MCS and MCS/CSH scaffolds. Cellular experiments…

Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration

Journal of Materials Chemistry B 2016 Volume 4, Pages 7452-7463

Bone defects, particularly large bone defects resulting from infections, trauma, surgical resection or genetic malformations, maintain a significant challenge for clinicians. In this study, the tricalcium silicate/mesoporous bioactive glass (C3S/MBG) cement scaffolds were successfully fabricated for the first time by 3D printing with a curing process, which combined the hydraulicity of C3S with the excellent biological property of MBG together. The C3S/MBG scaffolds exhibited 3D interconnected macropores (~400μm), high porosity (~70%), enhanced mechanical strength (>12MPa) and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on the scaffolds to evaluate their cell responses, and the results…