3D Bioplotter Research Papers

Displaying all papers by J. Li (5 results)

3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing

Acta Biomaterialia 2021 Volume 126, Pages 496-510

3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…

A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building

Materials & Design 2021 Volume 201, Article 109473

Bone related diseases and disorders increasingly impact human health. Electrical stimulation (ES) has been shown to promote osteogenesis and healing of bone defects. Graphene, is an electrically conductive and biocompatible material with good mechanical properties (strength with flexibility), and therefore shows significant promise as a cell-compatible electrode for ES. Graphene-based scaffolds may therefore be used for 3D cell and tissue support, including 3D osteoinduction. We have fabricated 3D graphene electrode structures to provide ES to human adipose stem cells (ADSCs). The assemblies support ADSC growth and differentiation, with ES augmenting proliferation and osteogenesis. Our findings expand our previous work on…

A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo

International Journal of Biological Sciences 2020 Volume 16, Issue 11, Pages 1821-1832

The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 (1393@MBG). Furthermore, we have applied DEX and BMP-2 on the 1393@MBG scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this 1393@MBG scaffold could effectively load and controlled release BMP-2, DNA and…

Surface nanogrooving of carbon microtubes

Scientific Reports 2018 Volume 8, Article 9924

Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography,…

Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration

Materials 2017 Volume 10, Issue 7, Article 831

Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity,…