3D Bioplotter Research Papers

Displaying all papers about Tricalcium Phosphate (9 results)

3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation

Biochemical and Biophysical Research Communications 2019

Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation…

Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering

Tissue Engineering Part C: Methods 2019

In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…

Three-dimensional printing of β-tricalcium phosphate/calcium silicate composite scaffolds for bone tissue engineering

Bio-Design and Manufacturing 2018 Volume 1, Issue 2, Pages 146-156

Bioactive scaffolds with interconnected porous structures are essential for guiding cell growth and new bone formation. In this work, we successfully fabricated three-dimensional (3D) porous β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composite scaffolds with different ratios by 3D printing technique and further investigated the physiochemical properties, in vitro apatite mineralization properties and degradability of porous β-TCP/CS scaffolds. Moreover, a series of in vitro cell experiments including the attachment, proliferation and osteogenic differentiation of mouse bone marrow stromal cells were conducted to testify their biological performances. The results showed that 3D printed β-TCP/CS scaffolds possessed of controllable internal porous structures and external…

3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone

Acta Biomaterialia 2018 Volume 71, Pages 96-107

To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and…

3D Bio-Plotted Tricalcium Phosphate/Zirconia Composite Scaffolds to Heal Large Size Bone Defects

Molecular & Cellular Biomechanics 2017 Vol. 14, No. 2, pages 125-136

β-TCP-Zirconia scaffolds with different architectures were fabricated by means of 3D-Bioplotting in order to enhance the mechanical and in-vitro ability of the scaffold to heal large size bone defects. In the present study scaffold architecture with different strand orientations (0o-90o, 0o-45o-135o-180o, 0o-108o-216o and 0o-72o-144o-36o-108o) were fabricated, characterized and evaluated for mechanical strength and cell proliferation ability. β-TCP powder (25µm) and PVA (Polyvinyl Alcohol) was acquired from Fisher Scientific, India. Zirconia (18 to 32 µm) was procured from Lobachemie, India. In brief 7.5%, PVA in distilled water was used as a binder and was mixed with 10 grams of (70/30) TCP-Zirconia…

The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs

Journal of Materials Science 2015 Volume 50, Issue 5, Pages 2138-2147

In the surgical treatment of tuberculosis of the bones, excision of the lesion site leaves defects in the bone structure. Recent research has shown benefits for bone tissue support, such as tricalcium phosphate, as regrowth materials. These biocompatible engineering materials have good bone inductivity and biologic mechanical performance. The goal of this study was to evaluate the use of 3D printing, a new technology, to design and build 3-dimensional support structures for use in grafting at lesion sites and for use in embedding the sustained release anti-tuberculosis drugs Rifampin and Isoniazid and determine the in vivo performance of these structures….

Comparison of bacterial adhesion and cellular proliferation on newly developed three-dimensional scaffolds manufactured by rapid prototyping technology

Journal of Biomedical Materials Research Part A 2011 Volume 98A, Issue 2, pages 303-311

Scaffolds used in the field of tissue engineering should facilitate the adherence, spreading, and ingrowth of cells as well as prevent microbial adherence. For the first time, this study simultaneously deals with microbial and tissue cell adhesion to rapid prototyping-produced 3D-scaffolds. The cell growth of human osteosarcoma cells (CAL-72) over a time period of 3-11 days were examined on three scaffolds (PLGA, PLLA, PLLA-TCP) and compared to the adhesion of salivary microorganisms and representative germs of the oral flora (Porphyromonas gingivalis, Prevotella nigrescens, Candida albicans, Enterococcus faecalis, Streptococcus mutans, and Streptococcus sanguinis). Scanning electron microscopy (SEM), cell proliferation measurements, and…

Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects

Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010 Volume 93B, Issue 2, Pages 520-530

The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from…

Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials

Journal of Biomedical Materials Research Part A 2008 Volume 87A, Issue 4, pages 933-943

Rapid prototyping (RP)-produced scaffolds aregaining increasing importance in scaffold-guided tissueengineering. Microbial adhesion on the surface of replacement materials has a strong influence on healing and long-term outcome. Consequently, it is important to examine the adherence of microorganisms on RP-produced scaffolds. This research focussed on manufacturing of scaffolds by 3D-bioplotting and examination of their microbial adhesion characteristics. Tricalciumphosphate (TCP), calcium/sodium alginate, and poly(lactide-co-glycolic acid) (PLGA) constructs were produced and used to study the adhesion of dental pathogens. Six oral bacterial strains, one Candida strain and human saliva were used for the adhesion studies. The number of colony forming units (CFU) were…