3D Bioplotter Research Papers

Displaying all papers about Nickel Oxide (4 results)

3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices

Nature Communications 2019 Volume 10, Article number: 904

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution…

Microstructure and Processing of 3D Printed Tungsten Microlattices and Infiltrated W–Cu Composites

Advanced Engineering Materials 2018 Volume 20, Article 1800354

ungsten is of industrial relevance due its outstanding intrinsic properties (e.g., highest melting‐point of all elements) and therefore difficult to 3D‐print by conventional methods. Here, tungsten micro‐lattices are produced by room‐temperature extrusion‐based 3D‐printing of an ink comprising WO3–0.5%NiO submicron powders, followed by H2‐reduction and Ni‐activated sintering. The green bodies underwent isotropic linear shrinkage of ≈50% during the thermal treatment resulting in micro‐lattices, with overall 35–60% open‐porosity, consisting of 95–100% dense W–0.5%Ni struts having ≈80–300 μm diameter. Ball‐milling the powders and inks reduced the sintering temperature needed to achieve full densification from 1400 to 1200 °C and enabled the ink to be extruded…

Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks

Advanced Engineering Materials 2016 Volume 19, Issue 11, Article 1600365

Inks comprised of metallic Fe or Ni powders, an elastomeric binder, and graded volatility solvents are 3D-printed via syringe extrusion and sintered to form metallic cellular structures. Similar structures are created from Fe2O3 and NiO particle-based inks, with an additional hydrogen reduction step before sintering. All sintered structures exhibit 92–98% relative density within their struts, with neither cracking nor visible warping despite extensive volumetric shrinkage (≈70–80%) associated with reduction (for oxide powders) and sintering (for both metal and oxide powders). The cellular architectures, with overall relative densities of 32–49%, exhibit low stiffness (1–6 GPa, due to the particular architecture used), high…

Metallic Architectures from 3D‐Printed Powder‐Based Liquid Inks

Advanced Functional Materials 2015 Volume 25, Issue 45, Pages 6985–6995

A new method for complex metallic architecture fabrication is presented, through synthesis and 3D-printing of a new class of 3D-inks into green-body structures followed by thermochemical transformation into sintered metallic counterparts. Small and large volumes of metal-oxide, metal, and metal compound 3D-printable inks are synthesized through simple mixing of solvent, powder, and the biomedical elastomer, polylactic-co-glycolic acid (PLGA). These inks can be 3D-printed under ambient conditions via simple extrusion at speeds upwards of 150 mm s–1 into millimeter- and centimeter-scale thin, thick, high aspect ratio, hollow and enclosed, and multi-material architectures. The resulting 3D-printed green-bodies can be handled immediately, are…