3D Bioplotter Research Papers

Displaying all papers about Coating (Matrigel) (4 results)

Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts

Biochemical Engineering Journal 2016 Volume 105, Part A, Pages 230–241

There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could…

Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel

Journal of Biomedical Materials Research Part A 2014 Volume 102, Issue 6, Pages 1652–1662

In tissue engineering research, generating constructs with an adequate extent of clinical applications remains a major challenge. In this context, rapid blood vessel ingrowth in the transplanted tissue engineering constructs is the key factor for successful incorporation. To accelerate the microvascular development in engineered tissues, we preincubated osteoblast-like cells as well as mesenchymal stem cells or a combination of both cell types in Matrigel-filled PLGA scaffolds before transplantation into the dorsal skinfold chambers of balb/c mice. By the use of preincubated mesenchymal stem cells, a significantly accelerated angiogenesis was achieved. Compared with previous studies that showed a decisive increase of…

Comparably accelerated vascularization by preincorporation of aortic fragments and mesenchymal stem cells in implanted tissue engineering constructs

Journal of Biomedical Materials Research Part A 2011 Volume 97A, Issue 4, Pages 383-394

The demanding need for tissue replacement resulted in manifold approaches for the construction of different tissues. One common problem which hampers the clinical usage of tissue engineering constructs is a limited vascularization. In an attempt to accelerate the vascularization of tissue engineering constructs we compared the usage of bone marrow mesenchymal stem cells (bmMSCs) and fragments derived from the aorta in vivo. Tissue engineering constructs composed of PLGA scaffolds containing Matrigel (n = 8), aortic fragments embedded in Matrigel (n = 8), bmMSCs embedded in Matrigel (n = 8), and aortic fragments embedded in Matrigel combined with bmMSCs (n =…

Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds

Journal of Biomedical Materials Research Part A 2008 Volume 85A, Issue 2, Pages 397-407

In tissue engineering, rapid ingrowth of blood vessels into scaffolds is a major prerequisite for the survival of three-dimensional tissue constructs. In the present study, we investigated whether the vascularization of implanted poly-D,L-lactic-co-glycolic acid (PLGA) scaffolds may be accelerated by incorporation of Matrigel. For this purpose, we investigated in the aortic ring assay the proangiogenic properties of growth factor reduced Matrigel (GFRM) and growth factor containing Matrigel (GFCM), which were then incorporated into the pores of PLGA scaffolds. Subsequently, we analyzed vascularization, biocompatibility, and incorporation of these scaffolds during 14 days after implantation into dorsal skinfold chambers of balb/c mice…