3D Bioplotter Research Papers

Displaying all papers about Coating (Alginate) (5 results)

3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation

Biochemical and Biophysical Research Communications 2019

Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation…

Alginate Microspheroid Encapsulation and Delivery of MG-63 Cells Into Polycaprolactone Scaffolds: A New Biofabrication Approach for Tissue Engineering Constructs

Journal of Nanotechnology in Engineering and Medicine 2015 Volume 6, Issue 2, 021003

Scaffolds play an important role in tissue engineering by providing structural framework and a surface for cells to attach, proliferate, and secrete extracellular matrix (ECM). In order to enable efficient tissue formation, delivering sufficient cells into the scaffold three-dimensional (3D) matrix using traditional static and dynamic seeding methods continues to be a critical challenge. In this study, we investigate a new cell delivery approach utilizing deposition of hydrogel-cell encapsulated microspheroids into polycaprolactone (PCL) scaffolds to improve the seeding efficiency. Three-dimensional-bioplotted PCL constructs (0 deg/90 deg lay down, 284 ± 6 μm strand width, and 555 ± 8 μm strand separation) inoculated with MG-63 model bone cells encapsulated within…

Hierarchical Fibrillar Scaffolds Obtained by Non-conventional Layer-By-Layer Electrostatic Self-Assembly

Advanced Healthcare Materials 2013 Volume 2, Issue 3, pages 422–427

A new application of layer-by-layer assembly is presented, able to create nano/micro fibrils or nanocoatings inside 3D scaffolds using non-fibrillar polyelectrolytes for tissue-engineering applications. This approach shows promise for developing advanced scaffolds with controlled nano/micro environments, and nature and architectures similar to the natural extracellular matrix, leading to improved biological performance.

An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects

Journal of Tissue Engineering and Regenerative Medicine 2013 Volume 7, Issue 9, Pages 687–696

The hypothesis of this study was that the extent of bone regeneration could be enhanced by using scaffolds with appropriate geometry, and that such an effect could be further increased by mimicking the natural timing of appearance of bone morphogenetic proteins BMP-2 and BMP-7 after fracture. Bioplotted poly(ε-caprolactone) (PCL) disks with four different fibre organizations were used to study the effect of 3D scaffold architecture on the healing of bone defects in a rat pelvis model. Moreover, one PCL construct was further modified by introducing a nanoparticulate sequential BMP-2/BMP-7 delivery system into this scaffold. Scaffolds and functionalized construct along with…

A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects

Biomedical Materials 2013 Volume 8, Number 4, 045009

The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are…