3D Bioplotter Research Papers

Displaying all papers about Cell Printing (44 results)

3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance

Biomaterials 2019 Volume 222, Article 119423

Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…

In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold

Bioprinting 2019

Objective To evaluate the recellularization potential of a bioprinted aortic heart valve scaffold printed with highly concentrated Type I collagen hydrogel (Lifeink® 200) and MSCs. Materials and methods A suspension of rat mesenchymal stem cells (MSCs) was mixed with Lifeink® 200 and was 3D-printed into gelatin support gel to produce disk scaffolds which were subsequently implanted subcutaneously in Sprague-Dawley rats for 2, 4, 8, and 12 weeks. The biomechanical properties of the scaffolds were evaluated by uniaxial tensile testing and cell infiltration and inflammation assessed via immunohistochemistry (IHC) and histological staining. Results There was an average decrease in both UTS…

Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions

Journal of Materials Chemistry B 2019 Volume 7, Issue 29, Pages 4538-4551

3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…

Printability and Cell Viability in Bioprinting Alginate Dialdehyde- Gelatin Scaffolds

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 6, Pages 2976-2987

Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions…

Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs

Acta Biomaterialia 2019 Volume 91, Pages 173-185

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…

Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications

Journal of the Mechanical Behavior of Biomedical Materials 2019

Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting

Biofabrication 2019 Volume 11, Issue 1, Article 015015

Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…

Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels

Acta Biomaterialia 2019 Volume 85, Pages 84-93

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context…

ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation

MHR: Basic science of reproductive medicine 2018 Volume 25, Issue 2, Pages 61–75

STUDY QUESTION Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in invasive capacity of human trophoblast cells.

Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink

Journal of Biomaterials Applications 2018 Volume 33, Issue 5, Pages 609-618

Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…

A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair

Advanced Healthcare Materials 2018 Volume 7, Issue 23, Article 1800672

Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…

Tyrosinase-doped bioink for 3D bioprinting of living skin constructs

Biomedical Materials 2018 Volume 13, Number 3, Article Number 035008

Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…

Characterization of Cell Damage and Proliferative Ability during and after Bioprinting

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 11, Pages 3906–3918

When a biomaterial solution containing living cells is subject to bioprinting, the cells experience process-induced stresses, including shear and extensional stresses. These process-induced stresses breach cell membranes and can lead to cell damage, thus reducing cell viability and functioning within the printed constructs. Studies have been conducted to determine the influence of shear stress on cell damage; however, the effect of extensional stress has been typically ignored in the literature until the recently collected evidence of its importance. This paper presents a novel method to characterize and quantify the cell damage caused by both shear and extensional stresses in bioprinting….

Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering

Acta Biomaterialia 2018 Volume 74, Pages 131-142

Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…

3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications

Biofabrication 2018 Volume 10, Number 3, Article 035014

Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…

Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy

Biofabrication 2018 Volume 10, Article 035012

Biofabrication processes can affect biological quality attributes of encapsulated cells within constructs. Currently, assessment of the fabricated constructs is performed offline by subjecting the constructs to destructive assays that require staining and sectioning. This drawback limits the translation of biofabrication processes to industrial practice. In this work, we investigate the dielectric response of viable cells encapsulated in bioprinted 3D hydrogel constructs to an applied alternating electric field as a label-free non-destructive monitoring approach. The relationship between β-dispersion parameters (permittivity change—Δε, Cole–Cole slope factor—α, critical polarization frequency—f c ) over the frequency spectrum and critical cellular quality attributes are investigated. Results…

Engineering Human Neural Tissue by 3D Bioprinting

Biomaterials for Tissue Engineering 2018 Pages 129-138

Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function

Acta Biomaterialia 2018 Volume 71, Pages 486-495

Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted…

3D Bioprinting of Breast Cancer Models for Drug Resistance Study

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 12, Pages 4401-4411

Adipose-derived mesenchymal stem/stromal cells (ADMSC) are one of the major stromal cells in the breast cancer microenvironment that promote cancer progression. Previous studies on the effects of ADMSC on breast cancer metastasis and drug resistance, using two-dimensional (2D) cultures, remained inconclusive. In the present study, we compared cocultured ADMSC and human epidermal receptor 2 positive breast primary breast cancer cells (21PT) in 2D and three-dimensional (3D) cultures and then examined their response to doxorubicin (DOX). We examined 3D bioprinted constructs with breast cancer cells in the middle and ADMSC in the edge region, which were made by using dual hydrogel-based…

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography

Biotechnology and Bioengineering 2017 Volume 115, Issue 1, Pages 257-265

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…

UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering

Tissue Engineering Part C: Methods 2017 Volume: 24 Issue 2, Pages 74-88

Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and pre-vascularized.. In this study, we aim to biofabricate a nano-reinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical and biological behavior. A safe UV exposure time with insignificant…

Repair of Tympanic Membrane Perforations with Customized, Bioprinted Ear Grafts Using Chinchilla Models

Tissue Engineering Part A 2017 Volume: 24 Issue 5-6, Pages 527-535

The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3 to 5% of cases after ear tube placement as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year and…

Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 9, Pages 548-564

Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in-situ. This study aims to (i) assess the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigate the potential of synchrotron X-ray phase contrast computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in-situ via an ex-vivo study….

[Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]

Nan Fang Yi Ke Da Xue Xue Bao (Journal of Southern Medical University) 2017 Volume 37, Issue 5, Pages 668-672

OBJECTIVE: To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. METHODS: HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded…

Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells

RSC Advances 2017 Volume 7, Pages 29312-29320

Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…

3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation

Advanced Healthcare Materials 2017 Volume 6, Issue 17, Article 1700175

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…

Traditional invasive and synchrotron-based non-invasive assessments of 3D-printed hybrid cartilage constructs

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 3, Pages 156-168

Three-dimensional (3D)-printed constructs made of polycaprolactone (PCL) and chondrocyte-impregnated alginate hydrogel (hybrid cartilage constructs) mimic the biphasic nature of articular cartilage, offering promise for cartilage tissue engineering (CTE) applications. However, the regulatory pathway for medical device development requires validation of such constructs through in vitro bench tests and in vivo preclinical examinations premarket approval. Furthermore, non-invasive imaging techniques are required for effective evaluation of the progress of these cartilage constructs, especially when implanted in animal models or human subjects. However, characterization of the individual components of the hybrid cartilage constructs and their associated time-dependent structural changes by currently available non-invasive…

Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1817–1826

Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality. Current research suggests that the impaired trophoblastic invasion of maternal spiral arteries contributes significantly to the development of PE. However, the pathobiology of PE remains poorly understood, and there is a lack of treatment options largely due to ineffective experimental models. Utilizing the capability of bioprinting and shear wave elastography, we developed a 3D, bioengineered placenta model (BPM) to study and quantify cell migration. Through BPM, we evaluated the effect of epidermal growth factor (EGF) on the migratory behavior of trophoblast and human mesenchymal stem cells. Our…

3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 7, Pages 1200–1210

Hydrogels are particularly attractive as scaffolding materials for cartilage tissue engineering because their high water content closely mimics the native extracellular matrix (ECM). Hydrogels can also provide a three-dimensional (3D) microenvironment for homogeneously suspended cells that retains their rounded morphology and thus facilitates chondrogenesis in cartilage tissue engineering. However, fabricating hydrogel scaffolds or cell-laden hydrogel constructs with a predesigned external shape and internal structure that does not collapse remains challenging because of the low viscosity and high water content of hydrogel precursors. Here, we present a study on the fabrication of (cell-laden) alginate hydrogel constructs using a 3D bioplotting system…

Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering

Journal of Synchrotron Radiation 2016 Volume 23, Issue 3, Pages 802-812

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis…

[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]

Journal of Peking University. Health Sciences 2016 Volume 48, Issue 1, Pages 45-50

To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…

3D-Bioprinting of Polylactic Acid (PLA) Nanofibers-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1732–1742

Bioinks play a central role in 3D-bioprinting by providing the supporting environment within which encapsulated cells can endure the stresses encountered during the digitally-driven fabrication process, and continue to mature, proliferate, and eventually form extracellular matrix (ECM). In order to be most effective, it is important that bioprinted constructs recapitulate the native tissue milieu as closely as possible. As such, musculoskeletal soft tissue constructs can benefit from bioinks that mimic their nanofibrous matrix constitution, which is also critical to their function. This study focuses on the development and proof-of-concept assessment of a fibrous bioink composed of alginate hydrogel, polylactic acid…

Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells

Advanced Healthcare Materials 2016 Volume 5, Issue 12, Pages 1429–1438

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium…

Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering

Tissue Engineering Part C: Methods 2016 Volume 22, Issue 3, Pages 173-188

Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted…

Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds

Journal of Biomaterials Science, Polymer Edition 2015 Volume 26, Issue 7, Pages 433-445

Recently alginate-based tissue repair scaffolds fabricated using 3D printing techniques have been extensively examined for use in tissue engineering applications. However, their physical and mechanical properties are unfavorable for many tissue engineering applications because these properties are poorly controlled during the fabrication process. Some improvement of alginate gel properties can be realized by addition of hyaluronic acid (HA), and this may also improve the ability of cells to interact with the gel. Here, we report improvement of the physical properties of alginate–HA gel scaffolds by the addition of the polycation polyethyleneimine (PEI) during the fabrication process in order to stabilize…

A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels

Advanced Materials 2015 Volume 27, Issue 9, Pages 1607–1614

A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.

Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural Integrity and Preserved Schwann Cell Viability

3D Printing and Additive Manufacturing 2014 Volume 1, Issue 4, Pages 194-203

Bioplotting is an emerging freeform scaffold fabrication technique useful for creating artificial tissue scaffolds containing living cells. Simultaneous maintenance of scaffold structural integrity and cell viability is a challenging task. In this article, we present strategies developed to bioplot alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells for potential use in peripheral nerve tissue engineering. The fabrication platform, upon which the scaffold is created, was coated with the polycation polyethylenimine to immobilize the first layer of the scaffold on the platform. Each layer was then dispensed into a bath containing calcium chloride to cross-link the alginate, polyvinyl…

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

Beilstein Journal of Nanotechnology 2014 Volume 5, Pages 610–621

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase…

Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting

PloS One 2014 Volume 9, Issue 11, Article e112497

We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin…

Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells

Biomaterials 2014 Volume 35, Issue 31, Pages 8810–8819

Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca2+-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca2+-complex, the cells proliferate with a generation time of approximately 47–55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence…

The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability

Biomaterials 2014 Volume 35, Issue 1, Pages 49–62

In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a…

Development of Schwann Cell-Encapsulated Alginate Scaffolds for the Repair of Peripheral Nerve Injury

CMBES Proceedings 35 2012

Nerve conduits for peripheral nerve repair have progressed from simple silicon tubes to complex engineered scaffolds. Recent advances in scaffold fabrication have enabled the incorporation of neurotrophins, extracellular matrix components and various cells into scaffolds for enhanced biologic properties. Bioplotting is one of the emerging methods, where the scaffold material, in form of a solution, is dispensed from a needle, layer by layer forming a three-dimensional structure. It enables the use of a wide range of materials, ranging from synthetic polymers (like polycaprolactone, polyglycolic acid, etc.) to naturally occurring polymers like alginate, chitosan, etc. Notably, the use of hydrogels gives…

Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 127-133

Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…