3D Bioplotter Research Papers

Displaying all papers about Alginate (57 results)

An advanced 3D monofilament biosuture

South African Pharmaceutical Journal 2020 Volume 87, Number 1, Cum Laude

Sutures are one of the most widely used medical devices with employment in over 12 million procedures per year globally.1 Yet, the ideal suture material does not exist. Over the years scientists and surgeons alike have set out to find a suture material that is biocompatible, easy to handle, does not cause unnecessary tissue damage and creates an optimal environment for wound healing.2 This has led to the discovery of numerous suture materials ranging from silk and catgut in the early 1800s to synthetic polymers such as polylactic acid and polyglycolide that are currently in use.3 Sutures on the market…

Mechanical properties of hybrid triphasic scaffolds for osteochondral tissue engineering

Materials Letters 2020 Volume 261, Article 126893

Reproducing the advanced complexity of native tissue by means of the 3D multi-functional construct is a promising tissue engineering approach to osteochondral tissue regeneration. In this study, we present a porous 3D construct composed of three zones responsible for the regeneration of non-calcified cartilage, calcified cartilage and subchondral bone. These three zones of the hybrid were composed of modified biopolymers: (i) alginate (Alg) reinforced by short polylactide (PLA) fibres, (ii) alginate and gelatine methacrylate (GelMA) combined with ß-tricalcium phosphate particles (TCP), (iii) 3D printed polycaprolactone scaffold subsequently modified with the use of an innovative solvent treatment method based on acetone…

Experimental Investigation and Optimal 3D Bioprinting Parameters of SA-Gel Porous Cartilage Scaffold

Applied Sciences 2020 Volume 10, Article 768

The main aim of this paper is to achieve the suitable SA-GEL (sodium alginate and gelatin) porous cartilage scaffold by 3D printing technology with optimal prediction parameters. Firstly, the characteristics of SA-GEL were analyzed, the influence of calcium chloride on the gel was explored, and the optimal cross-linking concentration and gelation temperature were determined. Secondly, a prediction model of the extrusion line width of SA-GEL was established, in which the printing pressure, the moving speed of the needle and the fiber interval were the important parameters affecting the printing performance of the SA-GEL composite material. Thirdly, the SA-GEL composite scaffolds…

Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication

ACS Applied Materials & Interfaces 2020 Volume 12, Issue 4, Pages 4343-4357

Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix,…

Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters

Applied Sciences 2020 Volume 10, Issue 1, Article 292

Extrusion-based bioprinting of hydrogel scaffolds is challenging due to printing-related issues, such as the lack of capability to precisely print or deposit hydrogels onto three-dimensional (3D) scaffolds as designed. Printability is an index to measure the difference between the designed and fabricated scaffold in the printing process, which, however, is still under-explored. While studies have been reported on printing hydrogel scaffolds from one or more hydrogels, there is limited knowledge on the printability of hydrogels and their printing processes. This paper presented our study on the printability of 3D printed hydrogel scaffolds, with a focus on identifying the influence of…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors

Biomedical Materials 2019 Volume 14, Article 065011

Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore,…

An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering

Biofabrication 2019 Volume 11, Number 4, Article 045012

Supplying oxygen to inner areas of cell constructs to support cell proliferation and metabolism is a major challenge in tissue engineering involving stem cells. Developing devices that incorporate oxygen release materials to increase the availability of the localized oxygen supply is therefore key to addressing this limitation. Herein, we designed and developed a 3D-printed oxygen-releasing device composed of an alginate hydrogel scaffold combined with an oxygen-generating biomaterial (calcium peroxide) to improve the oxygen supply of the microenvironment for culturing adipose tissue-derived stem cells. The results demonstrated that the 3D-printed oxygen-releasing device alleviated hypoxia, maintained oxygen availability, and ensured proliferation of…

Effects of 3-dimensional Bioprinting Alginate/ Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells

Journal of Endodontics 2019 Volume 45, Issue 6, Pages 706-715

Abrasive flow machining (AFM) is a nontraditional surface finishing method that finishes complex surface by pushing the abrasive media flow through the workpiece surface. The entrance effect that the material removal increases at the entrance of changing the cross-sectional flow channel is a difficult problem for AFM. In this paper, the effects of media rheological properties on the entrance effect are discussed. To explore the effects of the media’s viscoelasticity on the entrance effect, two sets of media with different viscoelasticity properties are adopted to study their rheological and machining performances in the designed flow channel with a contraction area….

Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 93, Pages 183-193

Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019 Volume 14, Article e00045

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting

Biofabrication 2019 Volume 11, Issue 1, Article 015015

Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…

Characterization of Cell Damage and Proliferative Ability during and after Bioprinting

ACS Biomaterials Science & Engineering 2018 Volume 4, Issue 11, Pages 3906–3918

When a biomaterial solution containing living cells is subject to bioprinting, the cells experience process-induced stresses, including shear and extensional stresses. These process-induced stresses breach cell membranes and can lead to cell damage, thus reducing cell viability and functioning within the printed constructs. Studies have been conducted to determine the influence of shear stress on cell damage; however, the effect of extensional stress has been typically ignored in the literature until the recently collected evidence of its importance. This paper presents a novel method to characterize and quantify the cell damage caused by both shear and extensional stresses in bioprinting….

Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands

Applied Sciences 2018 Volume 8, Issue 9, Pages 1422-1436

Three-dimensional (3D) bioplotting has been widely used to print hydrogel scaffolds for tissue engineering applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the desired mechanical properties. To overcome this issue, various numerical methods have been developed to predict the mechanical properties of scaffolds, but limited by the imperfect representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one layer into the previous layer. This paper presents our study on the development of a novel numerical model to predict the elastic modulus (one important index…


3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications

Biofabrication 2018 Volume 10, Number 3, Article 035014

Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…

Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy

Biofabrication 2018 Volume 10, Article 035012

Biofabrication processes can affect biological quality attributes of encapsulated cells within constructs. Currently, assessment of the fabricated constructs is performed offline by subjecting the constructs to destructive assays that require staining and sectioning. This drawback limits the translation of biofabrication processes to industrial practice. In this work, we investigate the dielectric response of viable cells encapsulated in bioprinted 3D hydrogel constructs to an applied alternating electric field as a label-free non-destructive monitoring approach. The relationship between β-dispersion parameters (permittivity change—Δε, Cole–Cole slope factor—α, critical polarization frequency—f c ) over the frequency spectrum and critical cellular quality attributes are investigated. Results…

Engineering Human Neural Tissue by 3D Bioprinting

Biomaterials for Tissue Engineering 2018 Pages 129-138

Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

A 3D bioprinted in situ conjugated‐co‐fabricated scaffold for potential bone tissue engineering applications

Journal of Biomedical Materials Research A 2018 Volume 106, Issue 5, Pages 1311-1321

There is a demand for progressive approaches in bone tissue engineering to repair and regenerate bone defects resulting from trauma or disease. This investigation sought to engineer a single‐step in situ conjugated polymeric scaffold employing 3D printing technology as an innovative fabricating tool. A polymeric scaffold was engineered in situ employing sodium alginate as a bio‐ink which interacted with a poly(ethyleneimine) solution on bioprinting to form a polyelectrolyte complex through ionic bond formation. Silica gel was included in the bio‐ink as temporal inorganic support component and for ultimate enhancement of osteoinduction. Characterization of the biorelevant properties of the scaffold was…

Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches

Journal of the Mechanical Behavior of Biomedical Materials 2018 Volume 80, Pages 111-118

Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl2) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression…


Rheological, In Situ Printability and Cell Viability Analysis of Hydrogels for Muscle Tissue Regeneration

Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference 2018 Pages 835-846

Advancements in additive manufacturing have made it possible to fabricate biologically relevant architectures from a wide variety of materials. Hydrogels have garnered increased attention for the fabrication of muscle tissue engineering constructs due to their resemblance to living tissue and ability to function as cell carriers. However, there is a lack of systematic approaches to screen bioinks based on their inherent properties, such as rheology, printability and cell viability. Furthermore, this study takes the critical first-step for connecting in-process sensor data with construct quality by studying the influence of printing parameters. Alginate-chitosan hydrogels were synthesized and subjected to a systematic…

Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds

Journal of Functional Biomaterials 2017 Volume 8, Issue 4, Article 48

Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI…

UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering

Tissue Engineering Part C: Methods 2017 Volume: 24 Issue 2, Pages 74-88

Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and pre-vascularized.. In this study, we aim to biofabricate a nano-reinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical and biological behavior. A safe UV exposure time with insignificant…

Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 9, Pages 548-564

Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in-situ. This study aims to (i) assess the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigate the potential of synchrotron X-ray phase contrast computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in-situ via an ex-vivo study….

[Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]

Nan Fang Yi Ke Da Xue Xue Bao (Journal of Southern Medical University) 2017 Volume 37, Issue 5, Pages 668-672

OBJECTIVE: To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. METHODS: HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded…

Potential of propagation-based synchrotron X-ray phase-contrast computed tomography for cardiac tissue engineering

Journal of Synchrotron Radiation 2017 Volume 24, Pages 842-853

Hydro­gel-based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X-ray attenuation of hydro­gels, conventional radiography and micro-computed tomography are unable to visualize the hydro­gel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X-ray propagation-based phase-contrast imaging computed tomography (PCI-CT) for three-dimensional (3D) visualization and assessment of the hydro­gel cardiac patches. First, alginate hydro­gel was 3D-printed into…

3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation

Advanced Healthcare Materials 2017 Volume 6, Issue 17, Article 1700175

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…

Modeling flow behavior and flow rate of medium viscous alginate for scaffold fabrication with 3D bioplotter

Journal of Manufacturing Science and Engineering 2017 Volume 139, Issue 8, Article 081002

Tissue regeneration with scaffold is one of the most promising approaches now a day, where application of dispensing-based rapid prototyping technique is drawing attention due to its capability to offer operational flexibility and print complex structure with utmost uniformity. In a pneumatic dispensing system, it is a critical issue to control the flow rate of biomaterial from dispensing tip, as some variables (material viscosity, temperature, needle geometry, and dispensing pressure) regulates the flow rate . In this context, model equations can play a vital role to control and predict the flow rate of dispensing material, and thus can eliminate the…

Traditional invasive and synchrotron-based non-invasive assessments of 3D-printed hybrid cartilage constructs

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 3, Pages 156-168

Three-dimensional (3D)-printed constructs made of polycaprolactone (PCL) and chondrocyte-impregnated alginate hydrogel (hybrid cartilage constructs) mimic the biphasic nature of articular cartilage, offering promise for cartilage tissue engineering (CTE) applications. However, the regulatory pathway for medical device development requires validation of such constructs through in vitro bench tests and in vivo preclinical examinations premarket approval. Furthermore, non-invasive imaging techniques are required for effective evaluation of the progress of these cartilage constructs, especially when implanted in animal models or human subjects. However, characterization of the individual components of the hybrid cartilage constructs and their associated time-dependent structural changes by currently available non-invasive…

3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation

Biofabrication 2016 Volume 8, Issue 3, 035002

In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>107 cells ml−1), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamide (GelMA), chondroitin sulfate amino ethyl methacrylate (CS-AEMA) and hyaluronic acid methacrylate (HAMA). The polymers were used to prepare three photocurable bioinks with increasing degree of biomimicry: (i) GelMA, (ii) GelMA + CS-AEMA and (iii) GelMA + CS-AEMA + HAMA. Alginate was added…

Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

PloS One 2016 Volume 11, Issue 6, e0157214

Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining,…

3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 7, Pages 1200–1210

Hydrogels are particularly attractive as scaffolding materials for cartilage tissue engineering because their high water content closely mimics the native extracellular matrix (ECM). Hydrogels can also provide a three-dimensional (3D) microenvironment for homogeneously suspended cells that retains their rounded morphology and thus facilitates chondrogenesis in cartilage tissue engineering. However, fabricating hydrogel scaffolds or cell-laden hydrogel constructs with a predesigned external shape and internal structure that does not collapse remains challenging because of the low viscosity and high water content of hydrogel precursors. Here, we present a study on the fabrication of (cell-laden) alginate hydrogel constructs using a 3D bioplotting system…

Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering

Journal of Synchrotron Radiation 2016 Volume 23, Issue 3, Pages 802-812

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis…

[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]

Journal of Peking University. Health Sciences 2016 Volume 48, Issue 1, Pages 45-50

To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…

3D Printing of Porous Alginate/gelatin Hydrogel Scaffolds and Their Mechanical Property Characterization

International Journal of Polymeric Materials and Polymeric Biomaterials 2016 Volume 66, Issue 6, Pages 299-306

Hydrogel scaffolds with well-defined internal structure and interconnected porosity are important for tissue engineering. 3D Bioplotting technique supplemented with thermal/submerged ionic crosslinking process was used to fabricate hydrogel scaffolds. Six scaffold geometries were fabricated and their influence on mechanical performance was investigated. 0/90-0.8 group with the lowest porosity showed the highest Young’s modulus while the Shift group showed the lowest Young’s modulus. Same trend has also been observed for the dynamic modulus of each group. Results demonstrated that the mechanical performance of hydrogel scaffolds can be tuned by changing the internal structure parameters including strands orientation and spacing between strands.

Alginate Gelatin

3D-Bioprinting of Polylactic Acid (PLA) Nanofibers-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1732–1742

Bioinks play a central role in 3D-bioprinting by providing the supporting environment within which encapsulated cells can endure the stresses encountered during the digitally-driven fabrication process, and continue to mature, proliferate, and eventually form extracellular matrix (ECM). In order to be most effective, it is important that bioprinted constructs recapitulate the native tissue milieu as closely as possible. As such, musculoskeletal soft tissue constructs can benefit from bioinks that mimic their nanofibrous matrix constitution, which is also critical to their function. This study focuses on the development and proof-of-concept assessment of a fibrous bioink composed of alginate hydrogel, polylactic acid…

Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells

Advanced Healthcare Materials 2016 Volume 5, Issue 12, Pages 1429–1438

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium…

3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties

Journal of Materials Science & Technology 2016 Volume 32, Issue 9, Pages 889–900

Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layer-by-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of…

Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering

Tissue Engineering Part C: Methods 2016 Volume 22, Issue 3, Pages 173-188

Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted…

A new printable and durable N,O-carboxymethyl chitosan–Ca2+–polyphosphate complex with morphogenetic activity

Journal of Materials Chemistry B 2015 Volume 3, Issue 8, Pages 1722-1730

Biomimetic materials have been gaining increasing importance in tissue engineering since they may provide regenerative alternatives to the use of autologous tissues for transplantation. In the present study, we applied for bioprinting of a functionalized three-dimensional template, N,O-carboxymethyl chitosan (N,O-CMC), mimicking the physiological extracellular matrix. This polymer, widely used in tissue engineering, has been provided with functional activity by integration of polyphosphate (polyP), an osteogenically acting natural polymer. The two polymers, N,O-CMC and polyP, are linked together via Ca2+ bridges. This N,O-CMC + polyP material was proven to be printable and durable. The N,O-CMC + polyP printed layers and tissue…

Modular Small Diameter Vascular Grafts with Bioactive Functionalities

PloS One 2015 Volume 10, Issue 7, Article e0133632

We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed…

Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds

Journal of Biomaterials Science, Polymer Edition 2015 Volume 26, Issue 7, Pages 433-445

Recently alginate-based tissue repair scaffolds fabricated using 3D printing techniques have been extensively examined for use in tissue engineering applications. However, their physical and mechanical properties are unfavorable for many tissue engineering applications because these properties are poorly controlled during the fabrication process. Some improvement of alginate gel properties can be realized by addition of hyaluronic acid (HA), and this may also improve the ability of cells to interact with the gel. Here, we report improvement of the physical properties of alginate–HA gel scaffolds by the addition of the polycation polyethyleneimine (PEI) during the fabrication process in order to stabilize…

4D Printing with Mechanically Robust, Thermally Actuating Hydrogels

Macromolecular Rapid Communications 2015 Volume 36, Issue 12, Pages 1211–1217

A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the “dynamic” hydrogel ink alongside other static materials.

Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural Integrity and Preserved Schwann Cell Viability

3D Printing and Additive Manufacturing 2014 Volume 1, Issue 4, Pages 194-203

Bioplotting is an emerging freeform scaffold fabrication technique useful for creating artificial tissue scaffolds containing living cells. Simultaneous maintenance of scaffold structural integrity and cell viability is a challenging task. In this article, we present strategies developed to bioplot alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells for potential use in peripheral nerve tissue engineering. The fabrication platform, upon which the scaffold is created, was coated with the polycation polyethylenimine to immobilize the first layer of the scaffold on the platform. Each layer was then dispensed into a bath containing calcium chloride to cross-link the alginate, polyvinyl…

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

Beilstein Journal of Nanotechnology 2014 Volume 5, Pages 610–621

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the initial phase…

Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting

PloS One 2014 Volume 9, Issue 11, Article e112497

We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin…

Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells

Biomaterials 2014 Volume 35, Issue 31, Pages 8810–8819

Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca2+-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca2+-complex, the cells proliferate with a generation time of approximately 47–55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence…

Three-Dimensional Printing Fiber Reinforced Hydrogel Composites

ACS Applied Materials & Interfaces 2014 Volume 6, Issue 18, Pages 15998–16006

An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to…

Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering

Frontiers of Materials Science 2013 Volume 7, Issue 3, Pages 269-284

Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calciumions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite…

In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal

Integrative Biology 2013 Volume 5, Pages 889-898

Animal experiments help to progress and ensure safety of an increasing number of novel therapies, drug development and chemicals. Unfortunately, these also lead to major ethical concerns, costs and limited experimental capacity. We foresee a coercion of all these issues by implantation of well systems directly into vertebrate animals. Here, we used rapid prototyping to create wells with biomaterials to create a three-dimensional (3D) well-system that can be used in vitro and in vivo. First, the well sizes and numbers were adjusted for 3D cell culture and in vitro screening of molecules. Then, the functionality of the wells was evaluated…

Development of Schwann Cell-Encapsulated Alginate Scaffolds for the Repair of Peripheral Nerve Injury

CMBES Proceedings 35 2012

Nerve conduits for peripheral nerve repair have progressed from simple silicon tubes to complex engineered scaffolds. Recent advances in scaffold fabrication have enabled the incorporation of neurotrophins, extracellular matrix components and various cells into scaffolds for enhanced biologic properties. Bioplotting is one of the emerging methods, where the scaffold material, in form of a solution, is dispensed from a needle, layer by layer forming a three-dimensional structure. It enables the use of a wide range of materials, ranging from synthetic polymers (like polycaprolactone, polyglycolic acid, etc.) to naturally occurring polymers like alginate, chitosan, etc. Notably, the use of hydrogels gives…

Construction of 3D biological matrices using rapid prototyping technology

Rapid Prototyping Journal 2009 Volume 15, Issue 3, Pages 204 - 210

Purpose Hydrogels with low viscosities tend to be difficult to use in constructing tissue engineering (TE) scaffolds used to replace or restore damaged tissue, due to the length of time it takes for final gelation to take place resulting in the scaffolds collapsing due to their mechanical instability. However, recent advances in rapid prototyping have allowed for a new technology called bioplotting to be developed, which aims to circumvent these inherent problems. This paper aims to present details of the process. Design/methodology/approach The paper demonstrates how by using the bioplotting technique complex 3D geometrical scaffolds with accurate feature sizes and…

Formed 3D Bio-Scaffolds via Rapid Prototyping Technology

IFMBE Proceedings 2009 Volume 22, Pages 2200-2204

The construction of biomaterial scaffolds for cell seeding is now seen as the most common approach for producing artificial tissue as compared with cell self-assembly and Acellular matrix techniques. This paper describes the use of synthetic and natural polymeric material shaped into 3D biological matrices by using Rapid Prototyping (RP) technology. Recent advances in RP technology have greatly enhanced the range of biomaterials that can now be constructed into scaffolds, also allowing for maximized control of the pore size and architecture. Bioplotting is one such method which allows the dispensing of various biomaterials into a media bath which has similar…

Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 127-133

Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…

Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials

Journal of Biomedical Materials Research Part A 2008 Volume 87A, Issue 4, pages 933-943

Rapid prototyping (RP)-produced scaffolds aregaining increasing importance in scaffold-guided tissueengineering. Microbial adhesion on the surface of replacement materials has a strong influence on healing and long-term outcome. Consequently, it is important to examine the adherence of microorganisms on RP-produced scaffolds. This research focussed on manufacturing of scaffolds by 3D-bioplotting and examination of their microbial adhesion characteristics. Tricalciumphosphate (TCP), calcium/sodium alginate, and poly(lactide-co-glycolic acid) (PLGA) constructs were produced and used to study the adhesion of dental pathogens. Six oral bacterial strains, one Candida strain and human saliva were used for the adhesion studies. The number of colony forming units (CFU) were…

Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques

Journal of Materials Science 2002 Volume 37, Issue 15, pp 3107-3116

Scaffolds are of great importance for tissue engineering because they enable the production of functional living implants out of cells obtained from cell culture. These scaffolds require individual external shape and well defined internal structure with interconnected porosity. The problem of the fabrication of prototypes from computer assisted design (CAD) data is well known in automotive industry. Rapid prototyping (RP) techniques are able to produce such parts. Some RP techniques exist for hard tissue implants. Soft tissue scaffolds need a hydrogel material. No biofunctional and cell compatible processing for hydrogels exists in the area of RP. Therefore, a new rapid…

Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering

Biomaterials 2002 Volume 23, Issue 23, Pages 4437-4447

In the year 2000 a new rapid prototyping (RP) technology was developed at the Freiburg Materials Research Center to meet the demands for desktop fabrication of scaffolds useful in tissue engineering. A key feature of this RP technology is the three-dimensional (3D) dispensing of liquids and pastes in liquid media. In contrast to conventional RP systems, mainly focused on melt processing, the 3D dispensing RP process (3D plotting) can apply a much larger variety of synthetic as well as natural materials, including aqueous solutions and pastes, to fabricate scaffolds for application in tissue engineering. For the first time, hydrogel scaffolds…

3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures

ACS Biomaterials Science & Engineering 2019 Volume 5, Issue 11, Pages 6290-6299

Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix. The method used and concentrations of copper and the reducing agent were found to affect the stability…