3D Bioplotter Research Papers

Displaying all papers by Z. Xiao (2 results)

2D and 3D-printing of self-healing gels: design and extrusion of self-rolling objects

Molecular Systems Design & Engineering 2017 Volume 2, Issue 3, Pages 283-292

In this work, we report the synthesis, characterization and three-dimensional (3D) printing of self-healing gels. The gels are prepared by cross-linking benzaldehyde-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA) with ethylenediamine (EDA) to form dynamic imine bonds. An immediate gelation was observed within seconds, followed by a full maturation, enabling time independent and stable printing. The self-healing gels showed 98% recovery from mechanical damages. To establish a printable window for our well-defined system, and to allow robust printability, we examined a broad number of ink formulations. To tune the rheology towards the formation of soft and extrudable, yet stable and self-supporting materials, we examined…

3D-printing of dynamic self-healing cryogels with tuneable properties

Polymer Chemistry 2017 Volume 9, Pages 1684-1692

We report a novel synthetic and processing methodology for the preparation of doubly dynamic, self-healing, 3D-printable macroporous gels. 3D-printable oxime hydrogels were prepared by cross-linking poly(n-hydroxyethyl acrylamide-co-methyl vinyl ketone) (PHEAA-co-PMVK) with a bifunctional hydroxylamine. 3D-printed oxime hydrogels were subjected to post-printing treatment by thermally induced phase separation (TIPS), which facilitated the formation of hydrogen bonding and oxime cross-links, and dramatically increased the mechanical strength of soft oxime objects in a well-controlled manner by up to ∼1900%. The mechanical properties of the cryogels were tuned by freezing conditions, which affected the microstructure of the cryogels. These doubly dynamic 3D-printed cryogels are…