3D Bioplotter Research Papers

Displaying all papers by T. Hermannsdörfer (2 results)

A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: Preliminary study

Virtual and Physical Prototyping 2011 Volume 6, Issue 4, Pages 189-195

A basic approach toward the design of three-dimensional (3D) rapid prototyped magnetic scaffolds for hard-tissue regeneration has been proposed. In particular, 3D scaffolds consisting of a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) or iron-doped hydroxyapatite (FeHA) nanoparticles were fabricated through a 3D fibre deposition technique. As a first approach, a polymer to nanoparticle weight ratio of 90/10 (wt/wt) was used. The effect of the inclusion of both kinds of nanoparticles on the mechanical, magnetic, and biological performances of the scaffolds was studied. The inclusion of Fe3O4 and FeHA nanoparticles generally improves the modulus and the yield stress of the…

A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering

Jounal of Applied Polymer Science 2011 Volume 122, Issue 6, Pages 3599-3605

Magnetic scaffolds for bone tissue engineering based on a poly(ε-caprolactone) (PCL) matrix and iron oxide (Fe3O4) magnetic nanoparticles were designed and developed through a three-dimensional (3D) fiber-deposition technique. PCL/Fe3O4 scaffolds were characterized by a 90/10 w/w composition. Tensile and magnetic measurements were carried out, and nondestructive 3D imaging was performed through microcomputed tomography (Micro-CT). Furthermore, confocal analysis was undertaken to investigate human mesenchymal stem cell adhesion and spreading on the PCL/Fe3O4 nanocomposite fibers. The results suggest that nanoparticles mechanically reinforced the PCL matrix; the elastic modulus and the maximum stress increased about 10 and 30%, respectively. However, the maximum strain…