3D Bioplotter Research Papers

Displaying all papers by M. J. Lerman (4 results)

Endothelial/Mesenchymal Stem Cell Crosstalk within Bioprinted Cocultures

Tissue Engineering: Part A 2019

The development of viable tissue surrogates requires a vascular network that sustains cell metabolism and tissue development. The coculture of endothelial cells (ECs) and mesenchymal stem cells (MSCs), the two key players involved in blood vessel formation, has been heralded in tissue engineering (TE) as one of the most promising approaches for scaffold vascularization. However, MSCs may exert both proangiogenic as well antiangiogenic role. Furthermore, it is unclear which cell type is responsible for the upregulation of angiogenic pathways observed in EC:MSC cocultures. There is disagreement on the proangiogenic action of MSCs, as they have also been shown to negatively…

Development of surface functionalization strategies for 3D‐printed polystyrene constructs

Journal of Biomedical Material Research, Part B: Applied Biomaterials 2019 Volume 107, Issue 8, Pages 2566-2578

There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of…

3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects

Biomaterials 2018 Volume 185, Pages 219-231

While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair of articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implants. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold…

Printing Biological Liquid On Hydrophobic 3D Electrodes

Solid-State, Actuators, and Microsystems Workshop 2018 Papes 144-147

This paper presents for the first time a programmable and scalable 3D electro-bioprinting (3D-EBP) process for patterning bionanoreceptors, cysteine-modified Tobacco mosaic virus (TMV1cys), on high-density micropillar array electrodes. The structural hydrophobicity in high aspect ratio geometries of micro/nano devices poses a critical challenge for assembling 3D biomaterial-device interfaces. Here, we have successfully integrated electrowetting principles with a modified state-of-the-art bioprinter for automated, high-throughput, and large-scale patterning of TMV1cys particles on hydrophobic 3D electrodes. The 3D-EBP processed bionanoreceptors maintained both structural and chemical functions as characterized via SEM and fluorescence microscopy. Overall, the innovative 3D biomanufacturing process creates excellent opportunities for…