3D Bioplotter Research Papers

Displaying all papers by M. Hallman (1 results)

Influence of Geometry and Architecture on the In Vivo Success of 3D-Printed Scaffolds for Spinal Fusion

Tissue Engineering Part A 2020

We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed material comprising hydroxyapatite (HA) and demineralized bone matrix (DBM) for bone regeneration. This material has demonstrated the capacity to promote re-mineralization of the DBM particles within the scaffold struts and shows potential to promote successful spine fusion. Here, we investigate the role of geometry and architecture in osteointegration, vascularization, and facilitation of spine fusion in a preclinical model. Inks containing HA and DBM particles in a poly(lactide-co-glycolide) elastomer were 3D-printed into scaffolds with varying relative strut angles (90° vs. 45° advancing angle), macropore size (0 μm vs. 500 μm vs. 1000 μm), and strut…