3D Bioplotter Research Papers

Displaying all papers by L. Moroni (18 results)

3D fiber deposited polymeric scaffolds for external auditory canal wall

Journal of Materials Science: Materials in Medicine 2018 Volume 29, Issue 5, Article 63

The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young’s modulus of 25.1 ± 7.0 MPa. Finally, the EAC…

Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation

Macromolecular Rapid Communications 2017 Volume 38, Article 1700186

The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts…

Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo

Biomaterials 2015 Volume 61, Pages 190–202

Cells and tissues are intrinsically adapted to molecular gradients and use them to maintain or change their activity. The effect of such gradients is particularly important for cell populations that have an intrinsic capacity to differentiate into multiple cell lineages, such as bone marrow derived mesenchymal stromal cells (MSCs). Our results showed that nutrient gradients prompt the spatiotemporal organization of MSCs in 3D culture. Cells adapted to their 3D environment without significant cell death or cell differentiation. Kinetics data and whole-genome gene expression analysis suggest that a low proliferation activity phenotype predominates in stromal cells cultured in 3D, likely due…

Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

Biofabrication 2015 Volume 7, Number 2, Article 025005

The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale…

Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

Scientific Reports 2014 Volume 4, Article number 6325

Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials’ surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β,…

In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal

Integrative Biology 2013 Volume 5, Pages 889-898

Animal experiments help to progress and ensure safety of an increasing number of novel therapies, drug development and chemicals. Unfortunately, these also lead to major ethical concerns, costs and limited experimental capacity. We foresee a coercion of all these issues by implantation of well systems directly into vertebrate animals. Here, we used rapid prototyping to create wells with biomaterials to create a three-dimensional (3D) well-system that can be used in vitro and in vivo. First, the well sizes and numbers were adjusted for 3D cell culture and in vitro screening of molecules. Then, the functionality of the wells was evaluated…

Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

Biomatter 2013 Volume 3, Issue 2, e23705

Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a…

Monolithic and assembled polymer–ceramic composites for bone regeneration

Acta Biomaterialia 2013 Volume 9, Issue 3, Pages 5708–5717

The rationale for the use of polymer–ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA–HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars…

The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration

Biomaterials 2013 Volume 34, Issue 17, Pages 4259–4265

An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties,…

Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three‐dimensional fiber deposition method

Journal of Biomedical Materials Research Part A 2012 Volume 100A, Issue 10, Pages 2739-2749

The mechanical properties of amorphous, degradable, and highly porous poly(lactide-co-caprolactone) structures have been improved by using a 3D fiber deposition (3DF) method. Two designs of 3DF scaffolds, with 45° and 90° layer rotation, were printed and compared with scaffolds produced by a salt-leaching method. The scaffolds had a porosity range from 64% to 82% and a high interconnectivity, measured by micro-computer tomography. The 3DF scaffolds had 8–9 times higher compressive stiffness and 3–5 times higher tensile stiffness than the salt-leached scaffolds. There was a distinct decrease in the molecular weight during printing as a consequence of the high temperature. The…

Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs

Acta Biomaterialia 2011 Volume 7, Issue 9, Pages 3312-3324

Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study…

Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications

Biomacromolecules 2009 Volume 10, Issue 7, Pages 1689-1696

Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the deposition; 2) maintaining cell viability and cell function and 3) easy handling of the printed construct. In this study we analyze the applicability of a novel, photosensitive hydrogel (Lutrol) for printing of 3D structured bone grafts. We benefit from the fast temperature-responsive gelation ability of thermosensitive Lutrol-F127, ensuring organized 3D extrusion, and the additional stability provided by…

3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation

Advanced Functional Materials 2008 Volume 18, Issue 1, Pages 53-60

Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three-dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale….

Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 135-147

Embryonic stem (ES) cells are a potential source for cartilage tissue engineering because they provide an unlimited supply of cells that can be differentiated into chondrocytes. So far, chondrogenic differentiation of both mouse and human ES cells has only been demonstrated in two-dimensional cultures, in pellet cultures, in a hydrogel, or on thin biomaterials. The next challenge will be to form cartilage on a load-bearing, clinically relevant-sized scaffold in vitro and in vivo, to regenerate defects in patients suffering from articular cartilage disorders. For a successful implant, cells have to be seeded efficiently and homogenously throughout the scaffold. Parameters investigated…

Anatomical 3D fiber – deposited scaffolds for tissue engineering: designing a neotrachea

Tissue Engineering 2007 Volume: 13 Issue 10, Pages 2483-2493

The advantage of using anatomically shaped scaffolds as compared to modeled designs was investigated and assessed in terms of cartilage formation in an artificial tracheal construct. Scaffolds were rapid prototyped with a technique named three-dimensional fiber deposition (3DF). Anatomical scaffolds were fabricated from a patient-derived computerized tomography dataset, and compared to cylindrical and toroidal tubular scaffolds. Lewis rat tracheal chondrocytes were seeded on 3DF scaffolds and cultured for 21 days. The 3-(4,5-dimethylthiazol-2yl)-2,5-dyphenyltetrazolium bromide (MTT) and sulfated glycosaminoglycan (GAG) assays were performed to measure the relative number of cells and the extracellular matrix (ECM) formed. After 3 weeks of culture, the…

Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis

Journal of Biomedical Materials Research Part A 2006 Volume 78A, Issue 3, pages 605-614

Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold’s pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the scaffold structure for its ultimate in vivo application to regenerate a natural tissue. Experimental data from dynamic mechanical analysis (DMA) reveal a dependence of the dynamic stiffness of the scaffold on the intrinsic mechanical and physicochemical properties of the material used, and on the overall porosity and architecture of the construct. The aim of this study was to assess the…

Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness

Biomaterials 2006 Volume 27, Issue 35, Pages 5918-5926

Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through…

3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties

Biomaterials 2006 Volume 27, Issue 7, Pages 974-985

One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds….