3D Bioplotter Research Papers

Displaying all papers by L. Li (3 results)

Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair

Ceramics International 2021 Volume 47, Issue 13, Pages 18905-18912

Calcium silicate (CS) composite bone tissue engineering scaffolds were three-dimensionally printed using titanium metallic powders as the second strengthening phase for overcoming the inherent brittleness and fast degradability. In order to promote the sintering process of all composite scaffolds, mesoporous structure was further introduced into sol-gel-derived CS powders obtaining mesoporous CS (MCS) with larger surface area. The influences of mesoporous structure, sintering temperature and Ti content have been investigated through comparisons of the final scaffold composition, microstructure, compressive strength and in vitro stability. Results showed that CS matrix materials reacted with Ti could form less degradable CaTiO3 and TiC ceramic…

3D-printed ternary SiO2CaOP2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration

Ceramics International 2019 Volume 45, Issue 8, Pages 10997-11005

Simple ternary SiO2CaOP2O5 bioglasses proved sufficient osteogenesis capacity. In this study, the bioglasses were 3D printed into porous scaffolds and SiO2/CaO molar ratio was altered (from 90/5 to 60/35) to achieve tunable glass-ceramic compositions after thermal treatment. Scaffolds possessed interconnected porous structure with controllable porosities via 3D printing technique. In addition, microstructure and properties of mechanical strength, degradation, ion dissolution and apatite formation were investigated. Characterization results showed that higher content of SiO2 produced more homogeneous crystalline particles and sintering compactness, thus led to higher strength. For scaffolds with higher CaO content, more glasses were maintained and faster degradation rate…

3D Bioprinting of Cellulose with Controlled Porous Structures from NMMO

Materials Letters 2017 Volume 210, Pages 136-138
L. Li Y. Zhu Y. Yang

In the present work, dissolved cellulose has been 3D bioprinted to produce complex structures with ordered interconnected pores. The process consists of the dissolution of dissolving pulps in N-methylmorpholine-N-oxide (NMMO), multilayered dispensing, water removal of NMMO and freeze-drying. 3D bioprinting of cellulose/NMMO solution at 70 ℃ was analogous to that of thermoplastics by the process of melting and solidification to produce cellulose/NMMO objects in the solid form. However, 3D bioprinting of cellulose/NMMO solution at a higher temperature than 70 ℃ produced cellulose/NMMO objects in the gel form. Cellulose was regenerated by water; thereafter, freeze-drying treatment maintained the 3D bioprinted structures…