3D Bioplotter Research Papers

Displaying all papers by K. Mustafa (3 results)

Printability and critical insight into polymer properties during direct- extrusion based 3D printing of medical grade polylactide and copolyesters

Biomacromolecules 2019

Various 3D printing techniques currently use degradable polymers such as aliphatic polyesters to create well-defined scaffolds. Even though degradable polymers are influenced by the printing process, and this subsequently affects the mechanical properties and degradation profile, degradation of the polymer during the process is not often considered. Degradable scaffolds are today printed and cell-material interactions evaluated without considering the fact that the polymer change while printing the scaffold. Our methodology herein was to vary the printing parameters such as temperature, pressure, and speed to define the relationship between printability, polymer microstructure, composition, degradation profile during the process and rheological behavior….

PLLA PCLA PLGA

Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells

Biomacromolecules 2018 Voluem 19, Issue 11, Pages 4307-4319

3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase…

Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three‐dimensional fiber deposition method

Journal of Biomedical Materials Research Part A 2012 Volume 100A, Issue 10, Pages 2739-2749

The mechanical properties of amorphous, degradable, and highly porous poly(lactide-co-caprolactone) structures have been improved by using a 3D fiber deposition (3DF) method. Two designs of 3DF scaffolds, with 45° and 90° layer rotation, were printed and compared with scaffolds produced by a salt-leaching method. The scaffolds had a porosity range from 64% to 82% and a high interconnectivity, measured by micro-computer tomography. The 3DF scaffolds had 8–9 times higher compressive stiffness and 3–5 times higher tensile stiffness than the salt-leached scaffolds. There was a distinct decrease in the molecular weight during printing as a consequence of the high temperature. The…