3D Bioplotter Research Papers

Displaying all papers by J. Silva-Correia (3 results)

Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc

Materials Today Communications 2019 Volume 19, Pages 506-512

Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in…

Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants

Advanced Healthcare Materials 2017 Volume 6, Issue 22, 1701021

The pursuit for the “perfect” biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology.

3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds

Journal of 3D Printing in Medicine 2017 Volume 1, Issue 2, Pages 91-101

Aim: To develop a methodology for producing patient-specific scaffolds that mimic the annulus fibrosus (AF) of the human intervertebral disc by means of combining MRI and 3D bioprinting. Methods: In order to obtain the AF 3D model from patient’s volumetric MRI dataset, the RheumaSCORE segmentation software was used. Polycaprolactone scaffolds with three different internal architectures were fabricated by 3D bioprinting, and characterized by microcomputed tomography. Results: The demonstrated methodology of a geometry reconstruction pipeline enabled us to successfully obtain an accurate AF model and 3D print patient-specific scaffolds with different internal architectures. Conclusion: The results guide us toward patient-specific intervertebral…