3D Bioplotter Research Papers

Displaying all papers by G. G. Wallace (11 results)

3D hybrid printing platform for auricular cartilage reconstruction

Biomedical Physics & Engineering Express 2020 Volume 6, Number 3, Article 035003

As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the…

3D Printed Sugar‐Sensing Hydrogels

Macromolecular Rapid Communications 2020 Volume 41, Issue 9, Article 1900610

The ability of boronic acids (BAs) to reversibly bind diols, such as sugars, has been widely studied in recent years. In solution, through the incorporation of additional fluorophores, the BA–sugar interaction can be monitored by changes in fluorescence. Ultimately, a practical realization of this technology requires a transition from solution‐based methodologies. Herein, the first example of 3D‐printed sugar‐sensing hydrogels, achieved through the incorporation of a BA–fluorophore pair in a gelatin methacrylamide‐based matrix is presented. Through optimization of monomeric cocktails, it is possible to use extrusion printing to generate structured porous hydrogels which show a measurable and reproducible linear fluorescence response…

Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs

Acta Biomaterialia 2019 Volume 91, Pages 173-185

In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…

Engineering Human Neural Tissue by 3D Bioprinting

Biomaterials for Tissue Engineering 2018 Pages 129-138

Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.

3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation

Advanced Healthcare Materials 2017 Volume 6, Issue 17, Article 1700175

The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…

In-situ handheld 3D Bioprinting for cartilage regeneration

Journal of Tissue Engineering and Regenerative Medicine 2017 Volume 12, Issue 3, Pages 611-621

Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ 3D printing is an exciting and innovative bio-fabrication technology that enables the surgeon to deliver tissue- engineering techniques at the time and location of need. We have created a hand- held 3D printing device (Biopen) that allows the simultaneous co-axial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single session surgery. This pilot study assesses the ability of the Biopen to repair a full thickness chondral defect and the early outcomes in cartilage…

Conductive Composite Fibres from Reduced Graphene Oxide and Polypyrrole Nanoparticles

Journal of Materials Chemistry B 2016 Volume 4, Issue 6, Pages 1142-1179

Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres…

Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells

Advanced Healthcare Materials 2016 Volume 5, Issue 12, Pages 1429–1438

Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium…

From nanoparticles to fibres: effect of dispersion composition on fibre properties

Journal of Nanoparticle Research 2015 Volume 17, Issue 237, Pages 237ff

A polyvinyl alcohol (PVA)-stabilized polypyrrole nanodispersion has been optimised for conductivity and processability by decreasing the quantity of PVA before and after synthesis. A reduction of PVA before synthesis leads to the formation of particles with a slight increase in dry particle diameter (51 ± 6 to 63 ± 3 nm), and conversely a reduced hydrodynamic diameter. Conductivity of the dried nanoparticle films was not measureable after a reduction of PVA prior to synthesis. Using filtration of particles after synthesis, PVA content was sufficiently reduced to achieve dried thin film conductivity of 2 S cm−1, while the electroactivity of the…

A bio-friendly, green route to processable, biocompatible graphene/polymer composites

RSC Advances 2015 Volume 5, Issue 56, 45284-45290

Graphene-based polymer composites are a very promising class of compounds for tissue engineering scaffolds. However, in general the methods of synthesis are environmentally hazardous and residual toxic materials can affect the biocompatibility significantly. In this paper a simple, scalable, environmentally-friendly, microwave-assisted synthesis is described that results in conducting graphene/polycaprolactone composites that retain the processability and biocompatibility of the pristine polymer without introducing possibly hazardous reducing agents. Composites of polycaprolactone and graphene oxide were synthesised in a single step by the ring-opening polymerisation of ε-caprolactone in the presence of dispersed graphene oxide nanosheets under microwave irradiation. The graphene oxide provides a…

Graphene oxide dispersions: tuning rheology to enable fabrication

Materials Horizons 2014 Volume 1, Issue 3, Pages 326-331

Here, we show that graphene oxide (GO) dispersions exhibit unique viscoelastic properties, making them a new class of soft materials. The fundamental insights accrued here provide the basis for the development of fabrication protocols for these two-dimensional soft materials, in a diverse array of processing techniques.