3D Bioplotter Research Papers

Displaying all papers by F. Oveissi (3 results)

Highly Porous, Biocompatible Tough Hydrogels, Processable via Gel Fiber Spinning and 3D Gel Printing

Advanced Materials Interface 2020 Volume 7, Issue 3, Article 1901770

Conventional tough hydrogels offer enhanced mechanical properties and high toughness. Their application scope however is limited by their lack of processability. Here, a new porous tough hydrogel system is introduced which is processable via gel fiber spinning and 3D printing. The tough hydrogels are produced by rehydrating processable organogels developed by induced phase separation between two linear polymer chains capable of intermolecular hydrogen bonding. Through a slow sol–gel phase separation, highly porous gel networks made of hydrogen bonded polymer chains is formed. These organogels can be easily transformed to 3D printed multimaterial constructs or gel fibers, and after rehydration produce…

Tough and Processable Hydrogels Based on Lignin and Hydrophilic Polyurethane

ACS Applied Bio Materials 2018 Volume 1, Issue 6, Pages 2073–2081

Lignin is a low-cost, natural polymer with abundant polar sites on its backbone that can be utilized for physical cross-linking of polymers. Here, we use lignin for additional cross-linking of hydrophilic polyether-based polyurethane (HPU) hydrogels, aiming to improve their mechanical properties and processability. Without reducing the swelling, simple addition of 2.5 wt % lignin increases the fracture energy and Young’s modulus of HPU hydrogels from, respectively, 1540 ± 40 to 2050 ± 50 J m–2 and 1.29 ± 0.06 to 2.62 ± 0.84 MPa. Lignin also increases the lap shear adhesiveness of hydrogels and induces an immediate load recovery of…

Printed, Flexible pH Sensor Hydrogels for Wet Environments

Advanced Materials Technologies 2018 Volume 3, Issue 11, Article 1800137

Current sensors for monitoring environmental signals, such as pH, are often made from rigid materials that are incompatible with soft biological tissues. The high stiffness of such materials sets practical limitations on the in situ utilization of sensors under biological conditions. This article describes a soft yet robust hydrogel‐based pH sensor that can be 3D printed. The pH‐sensitive poly(3,4‐ethylenedioxythiophene) is combined with hydrophilic polyurethane to create novel printable inks with favorable biomechanical properties. These inks are employed to fabricate highly flexible pH sensors that linearly respond to pH in wet environments. The pH sensitive hydrogels can undergo extreme deformations including…