3D Bioplotter Research Papers

Displaying all papers by C. A. Van Blitterswijk (22 results)

Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation

Macromolecular Rapid Communications 2017 Volume 38, Article 1700186

The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts…

Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo

Biomaterials 2015 Volume 61, Pages 190–202

Cells and tissues are intrinsically adapted to molecular gradients and use them to maintain or change their activity. The effect of such gradients is particularly important for cell populations that have an intrinsic capacity to differentiate into multiple cell lineages, such as bone marrow derived mesenchymal stromal cells (MSCs). Our results showed that nutrient gradients prompt the spatiotemporal organization of MSCs in 3D culture. Cells adapted to their 3D environment without significant cell death or cell differentiation. Kinetics data and whole-genome gene expression analysis suggest that a low proliferation activity phenotype predominates in stromal cells cultured in 3D, likely due…

Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

Scientific Reports 2014 Volume 4, Article number 6325

Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials’ surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β,…

In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal

Integrative Biology 2013 Volume 5, Pages 889-898

Animal experiments help to progress and ensure safety of an increasing number of novel therapies, drug development and chemicals. Unfortunately, these also lead to major ethical concerns, costs and limited experimental capacity. We foresee a coercion of all these issues by implantation of well systems directly into vertebrate animals. Here, we used rapid prototyping to create wells with biomaterials to create a three-dimensional (3D) well-system that can be used in vitro and in vivo. First, the well sizes and numbers were adjusted for 3D cell culture and in vitro screening of molecules. Then, the functionality of the wells was evaluated…

Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering

Biomatter 2013 Volume 3, Issue 2, e23705

Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a…

Monolithic and assembled polymer–ceramic composites for bone regeneration

Acta Biomaterialia 2013 Volume 9, Issue 3, Pages 5708–5717

The rationale for the use of polymer–ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA–HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars…

The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration

Biomaterials 2013 Volume 34, Issue 17, Pages 4259–4265

An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties,…

Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs

Acta Biomaterialia 2011 Volume 7, Issue 9, Pages 3312-3324

Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study…

Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds

Biomaterials 2010 Volume 31, Issue 33, Pages 8696-8705

A practical method of photocrosslinking high molecular weight poly(trimethylene carbonate)(PTMC) is presented. Flexible, elastomeric and biodegradable networks could be readily prepared by UV irradiating PTMC films containing pentaerythritol triacrylate (PETA) and a photoinitiator. The network characteristics, mechanical properties, wettability, and in vitro enzymatic erosion of the photocrosslinked PTMC films were investigated. Densely crosslinked networks with gel contents up to 98% could be obtained in this manner. Upon photocrosslinking, flexible and tough networks with excellent elastomeric properties were obtained. To illustrate the ease with which the properties of the networks can be tailored, blends of PTMC with mPEG-PTMC or with PTMC-PCL-PTMC…

The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants

Journal of Biomedical Materials Research Part A 2010 Volume 92A, Issue 1, pages 33-42

3D porous Ti6Al4V scaffolds were directly fabricated by a rapid prototyping technology, 3D fiber deposition (3DF). In this study, scaffolds with different structures were fabricated by changing fiber spacing and fiber orientation. The influence of different architectures on mechanical properties and permeability of the scaffold were investigated. Mechanical analysis revealed that compressive strength and E-modulus increase with decreasing the porosity. Permeability measurements showed that not only the total porosity but also the porous structure can influence the permeability. 3DF was found to provide good control and reproducibility of the desired degree of porosity and the 3D structure. Results of this…

Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints

Cell Proliferation 2009 Volume 42, Issue 4, pages 485-497

Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints. Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated. Results:  Rapid prototyping…

Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction

Interactive CardioVasc Thoracic Surgery 2009 Volume 8, Issue 1, Pages 27-30

In this study we tested the possibility of seeding chondrocytes into poly (ethylene glycol)-terephthalate-poly (butylene terephthalate) PEOT/PBT scaffold through an intra-scaffold medium flow and the impact of this continuous medium flow on subsequent chondrocyte-scaffold culture. Eight cubic PEOT/PBT co-polymers (1 cm3) were assigned into two groups. In the semi-dynamic seeding group a continuous medium flow was created inside the scaffolds by a pump system. Around six million chondrocytes were harvested each day, suspended in 1 ml medium and delivered onto the scaffold through the perfusion for a sequential five days. Traditional chondrocytes directly seeding and static culture method was performed…

Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications

Biomacromolecules 2009 Volume 10, Issue 7, Pages 1689-1696

Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the deposition; 2) maintaining cell viability and cell function and 3) easy handling of the printed construct. In this study we analyze the applicability of a novel, photosensitive hydrogel (Lutrol) for printing of 3D structured bone grafts. We benefit from the fast temperature-responsive gelation ability of thermosensitive Lutrol-F127, ensuring organized 3D extrusion, and the additional stability provided by…

3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation

Advanced Functional Materials 2008 Volume 18, Issue 1, Pages 53-60

Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three-dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale….

Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 135-147

Embryonic stem (ES) cells are a potential source for cartilage tissue engineering because they provide an unlimited supply of cells that can be differentiated into chondrocytes. So far, chondrogenic differentiation of both mouse and human ES cells has only been demonstrated in two-dimensional cultures, in pellet cultures, in a hydrogel, or on thin biomaterials. The next challenge will be to form cartilage on a load-bearing, clinically relevant-sized scaffold in vitro and in vivo, to regenerate defects in patients suffering from articular cartilage disorders. For a successful implant, cells have to be seeded efficiently and homogenously throughout the scaffold. Parameters investigated…

Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite

Biomaterials 2007 Volume 28, Issue 29, Pages 4209-4218

In this study, porous 3D fiber deposition titanium (3DFT) and 3DFT combined with porous biphasic calcium phosphate ceramic (3DFT+BCP) implants, both bare and 1 week cultured with autologous bone marrow stromal cells (BMSCs), were implanted intramuscularly and orthotopically in 10 goats. To assess the dynamics of bone formation over time, fluorochrome markers were administered at 3, 6 and 9 weeks and the animals were sacrificed at 12 weeks after implantation. New bone in the implants was investigated by histology and histomorphometry of non-decalcified sections. Intramuscularly, no bone formation was found in any of the 3DFT implants, while a very limited…

Bone ingrowth in porous titanium implants produced by 3D fiber deposition

Biomaterials 2007 Volume 28, Issue 18, Pages 2810-2820

3D fiber deposition is a technique that allows the development of metallic scaffolds with accurately controlled pore size, porosity and interconnecting pore size, which in turn permits a more precise investigation of the effect of structural properties on the in vivo behavior of biomaterials. This study analyzed the in vivo performance of titanium alloy scaffolds fabricated using 3D fiber deposition. The titanium alloy scaffolds with different structural properties, such as pore size, porosity and interconnecting pore size were implanted on the decorticated transverse processes of the posterior lumbar spine of 10 goats. Prior to implantation, implant structure and permeability were…

Anatomical 3D fiber – deposited scaffolds for tissue engineering: designing a neotrachea

Tissue Engineering 2007 Volume: 13 Issue 10, Pages 2483-2493

The advantage of using anatomically shaped scaffolds as compared to modeled designs was investigated and assessed in terms of cartilage formation in an artificial tracheal construct. Scaffolds were rapid prototyped with a technique named three-dimensional fiber deposition (3DF). Anatomical scaffolds were fabricated from a patient-derived computerized tomography dataset, and compared to cylindrical and toroidal tubular scaffolds. Lewis rat tracheal chondrocytes were seeded on 3DF scaffolds and cultured for 21 days. The 3-(4,5-dimethylthiazol-2yl)-2,5-dyphenyltetrazolium bromide (MTT) and sulfated glycosaminoglycan (GAG) assays were performed to measure the relative number of cells and the extracellular matrix (ECM) formed. After 3 weeks of culture, the…

Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment

Biomaterials 2006 Volume 27, Issue 8, Pages 1223-1235

Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D computer-controlled fiber depositing of Ti6Al4V slurry at room temperature to produce a scaffold, consisting of layers of directionally aligned Ti6Al4V fibers. In this study, the Ti6Al4V slurry was developed for the 3D fiber depositing process, and the parameters of 3D fiber depositing were optimized. The experimental results show how the parameters influence the structure of porous scaffold. The potential…

Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis

Journal of Biomedical Materials Research Part A 2006 Volume 78A, Issue 3, pages 605-614

Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold’s pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the scaffold structure for its ultimate in vivo application to regenerate a natural tissue. Experimental data from dynamic mechanical analysis (DMA) reveal a dependence of the dynamic stiffness of the scaffold on the intrinsic mechanical and physicochemical properties of the material used, and on the overall porosity and architecture of the construct. The aim of this study was to assess the…

Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness

Biomaterials 2006 Volume 27, Issue 35, Pages 5918-5926

Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through…

3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties

Biomaterials 2006 Volume 27, Issue 7, Pages 974-985

One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds….