3D Bioplotter Research Papers

Displaying all papers by A. J. Pedro (2 results)

Development and Characterization of a Novel Hybrid Tissue Engineering-Based Scaffold for Spinal Cord Injury Repair

Tissue Engineering Part A 2010 Volume: 16 Issue 1, Pages 45-54

Spinal cord injury (SCI) represents a significant health and social problem, and therefore it is vital to develop novel strategies that can specifically target it. In this context, the objective of the present work was to develop a new range of three-dimensional (3D) tubular structures aimed at inducing the regeneration within SCI sites. Up to six different 3D tubular structures were initially developed by rapid prototyping: 3D bioplotting–based on a biodegradable blend of starch. These structures were then further complemented by injecting Gellan Gum, a polysaccharide-based hydrogel, in the central area of structures. The mechanical properties of these structures were…

Hierarchical starch‐based fibrous scaffold for bone tissue engineering applications

Journal of Tissue Engineering and Regenerative Medicine 2009 Volume 3, Issue 1, Pages 37-42

Fibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch-based scaffold. Such scaffolds were obtained by a combination of starch-polycaprolactone micro- and polycaprolactone nano-motifs, respectively produced by rapid prototyping (RP) and electrospinning techniques. Scanning electron microscopy (SEM) and micro-computed tomography analysis showed the successful fabrication of a multilayer scaffold composed of parallel aligned microfibres in a grid-like arrangement, intercalated by a mesh-like structure with randomly distributed nanofibres (NFM). Human osteoblast-like cells were dynamically seeded on the scaffolds, using spinner flasks, and cultured for 7…