3D Bioplotter Research Papers

Displaying all papers by A. D. McInnes (2 results)

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019 Volume 14, Article e00045

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…

Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands

Applied Sciences 2018 Volume 8, Issue 9, Pages 1422-1436

Three-dimensional (3D) bioplotting has been widely used to print hydrogel scaffolds for tissue engineering applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the desired mechanical properties. To overcome this issue, various numerical methods have been developed to predict the mechanical properties of scaffolds, but limited by the imperfect representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one layer into the previous layer. This paper presents our study on the development of a novel numerical model to predict the elastic modulus (one important index…