3D Bioplotter Research Papers

Displaying all papers by A-M. Yousefi (5 results)

I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation

ACS Apllied Bio Materials 2019

The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ∼300 μm, ∼380 μm, and ∼460 μm were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments…

Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells

Journal of Materials Science: Materials in Medicine 2015 Volume 26, Issue 116, Pages 116ff

Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous…

Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B

Biomaterials 2011 Volume 32, Issue 1, Pages 295-305

Gene therapy for hemophilia B and other hereditary plasma protein deficiencies showed great promise in pre-clinical and early clinical trials. However, safety concerns about in vivo delivery of viral vectors and poor post-transplant survival of ex vivo modified cells remain key hurdles for clinical translation of gene therapy. We here describe a 3D scaffold system based on porous hydroxyapatite-PLGA composites coated with biomineralized collagen 1. When combined with autologous gene-engineered factor IX (hFIX) positive mesenchymal stem cells (MSCs) and implanted in hemophilic mice, these scaffolds supported long-term engraftment and systemic protein delivery by MSCs in vivo. Optimization of the scaffolds…

Design and Dynamic Culture of 3D Scaffolds for Cartilage Tissue Engineering

Journal of Biomaterials Applications 2009

Engineered scaffolds for tissue-engineering should be designed to match the stiffness and strength of healthy tissues while maintaining an interconnected pore network and a reasonable porosity. In this work, we have used 3D-ploting technique to produce poly-LLactide (PLLA) macroporous scaffolds with two different pore sizes. The ability of these macroporous scaffolds to support chondrocyte attachment and viability were compared under static and dynamic loading in vitro. Moreover, the 3D-plotting technique was combined with porogen-leaching, leading to micro/macroporous scaffolds, so as to examine the effect of microporosity on the level of cell attachment and viability under similar loading condition. Canine chondrocytes…

Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy

Tissue Engineering Part A 2008 Volume: 14 Issue 6, Pages 1037-1048

Biomaterials capable of efficient gene delivery by embedded cells provide a fundamental tool for the treatment of acquired or hereditary diseases. A major obstacle is maintaining adequate nutrient and oxygen diffusion to cells within the biomaterial. In this study, we combined the solid free-form fabrication and porogen leaching techniques to fabricate three-dimensional scaffolds, with bimodal pore size distribution, for cell-based gene delivery. The objective of this study was to design micro-/macroporous scaffolds to improve cell viability and drug delivery. Murine bone marrow-derived mesenchymal stromal cells (MSCs) genetically engineered to secrete erythropoietin (EPO) were seeded onto poly-l-lactide (PLLA) scaffolds with different…