3D Bioplotter Research Papers

Displaying 10 latest papers (195 papers in the database)

Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications

BioMed Research International 2017 Volume 2017, Article ID 6956794

Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their…

Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering

Materials Science and Engineering: C 2017 Volume 78, 1 September 2017, Pages 787–795

Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using…

Integrated 3D printed scaffolds and electrical stimulation for enhancing primary human cardiomyocyte cultures

Bioprinting 2017

3D printing technology is driving innovation in a wide variety of disciplines, and is beginning to make inroads into the fields of medicine and biology. In particular, 3D printing is being increasingly utilized for the design and fabrication of three-dimensional cell culture scaffolds. This technology allows for scaffolds to be produced rapidly while maintaining a great deal of control over the matrix architecture. This paper presents an effective technique for rapidly designing and fabricating scaffolds from silicone rubber and polycaprolactone (PCL), appropriate for primary human cardiomyocyte cell cultures. Additionally, a stimulation device is developed and presented which can provide 6…

Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study

Materials Science and Engineering: C 2017 Volume 79, Issue 1, Pages 326–335

One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such…

In-situ handheld 3D Bioprinting for cartilage regeneration

Journal of Tissue Engineering and Regenerative Medicine 2017

Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ 3D printing is an exciting and innovative bio-fabrication technology that enables the surgeon to deliver tissue- engineering techniques at the time and location of need. We have created a hand- held 3D printing device (Biopen) that allows the simultaneous co-axial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single session surgery. This pilot study assesses the ability of the Biopen to repair a full thickness chondral defect and the early outcomes in cartilage…

A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice

Nature Communications 2017 Volume 88, Article number 15261

Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle–scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover,…

Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

Scientific Reports 2017 Volume 7, Article number: 44931

Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics,…

Modeling flow behavior and flow rate of medium viscous alginate for scaffold fabrication with 3D bioplotter

Journal of Manufacturing Science and Engineering 2017

Tissue regeneration with scaffold is one of the most promising approaches now a day, where application of dispensing-based rapid prototyping technique is drawing attention due to its capability to offer operational flexibility and print complex structure with utmost uniformity. In a pneumatic dispensing system, it is a critical issue to control the flow rate of biomaterial from dispensing tip, as some variables (material viscosity, temperature, needle geometry, and dispensing pressure) regulates the flow rate . In this context, model equations can play a vital role to control and predict the flow rate of dispensing material, and thus can eliminate the…

Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cells viability and proliferation

Rapid Prototyping Journal 2017

Purpose This study investigates the effect of 3D-bioplotted polycaprolactone (PCL) scaffold geometry on the biological and mechanical characteristics of human adipose-derived stem cell (hASC) seeded constructs. Design/methodology/approach Four 3D-bioplotted scaffold disc designs (Ø14.5 x 2 mm) with two levels of strand-pore feature sizes and two strand laydown patterns (0°/90° or 0°/120°/240°) were evaluated for hASC viability, proliferation, and construct compressive stiffness after 14 days of in vitro cell culture. Findings Scaffolds with the highest porosity (smaller strand-pore size in 0°/120°/240°) yielded the highest hASC proliferation and viability. Further testing of this design in a 6 mm thick configuration showed that…

3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds

Journal of 3D Printing in Medicine 2017 Volume 1, Issue 2, Pages 91-101

Aim: To develop a methodology for producing patient-specific scaffolds that mimic the annulus fibrosus (AF) of the human intervertebral disc by means of combining MRI and 3D bioprinting. Methods: In order to obtain the AF 3D model from patient’s volumetric MRI dataset, the RheumaSCORE segmentation software was used. Polycaprolactone scaffolds with three different internal architectures were fabricated by 3D bioprinting, and characterized by microcomputed tomography. Results: The demonstrated methodology of a geometry reconstruction pipeline enabled us to successfully obtain an accurate AF model and 3D print patient-specific scaffolds with different internal architectures. Conclusion: The results guide us toward patient-specific intervertebral…