3D Bioplotter Research Papers

Displaying 10 latest papers (311 papers in the database)

Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications

Materials Science and Engineering: C 2019 Volume 96, Pages 105-113

Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to…

3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration

Applied Surface Science 2019 Volumes 467–468, Pages 345-353

In an attempt to fabricate biomimetic bone repair scaffolds and improve bone regeneration point of view, we have three dimensionally printed porous scaffolds with biomineralized hydroxyapatite/silk fibroin nanocomposites. SF/HA composite particles were firstly produced via an in-situ mineral precipitation process when SF molecules were served as templates.. Microscopy observations of SF/HA showed homogeneous morphology and narrowly distributed size. By using sodium alginate (SA) as paste binder, scaffolds with different contents of SF/HA were subsequently 3D-printed under proper conditions. All the scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity about 70%, combined with a relative…

Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography

Journal of the Mechanical Behavior of Biomedical Materials 2019 Volume 89, Pages 199-208

The presence and progression of neuromuscular pathology, including spasticity, Duchenne’s muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance…

Gelatin Imaging

3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators

MRS Communications 2019

Flexible piezoelectric generators (PEGs) present a unique opportunity for renewable and sustainable energy harvesting. Here, we present a low-temperature and low-energy deposition method using solvent evaporation-assisted three-dimensional printing to deposit electroactive poly(vinylidene fluoride) (PVDF)-trifluoroethylene (TrFE) up to 19 structured layers. Visible-wavelength transmittance was above 92%, while ATR-FTIR spectroscopy showed little change in the electroactive phase fraction between layer depositions. Electroactivity from the fabricated PVDF-TrFE PEGs showed that a single structured layer gave the greatest output at 289.3 mV peak-to-peak voltage. This was proposed to be due to shear-induced polarization affording the alignment of the fluoropolymer dipoles without an electric field…

Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications

Journal of the Mechanical Behavior of Biomedical Materials 2019

Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…

A method to deliver patterned electrical impulses to Schwann cells cultured on an artificial axon

Neural Regeneration Research 2019 Volume 14, Issue 6, Pages 1052-1059

Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however, that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses…

Hydroxyapatite /Collagen 3D printed Scaffolds and their Osteogenic Effects on hBMSCs

Tissue Engineering Part A 2019

3D printing provides a novel approach to repair bone defects using customized biomimetic tissue scaffolds. To make a bone substitute closest to natural bone structure and composition, two different types of hydroxyapatite, Nano hydroxyapatite (nHA) and deproteinized bovine bone (DBB), were dispersed into collagen (CoL) to prepare the bio-ink for 3D printing. In doing so, a porous architecture was manufactured with 3D printing technology. The physical and chemical properties of the materials were evaluated, including biocompatibility and effect on the osteogenic differentiation of the human bone marrow-derived mesenchyme stem cells (hBMSCs). The XPS, XRD, FTIR, and the mechanical analysis of…

Nanogrooved carbon microtubes for wet 3D printing of conductive composite structures

Polymer International 2019

Recent advances in 3D printing have enabled the fabrication of interesting structures which were not achievable using traditional fabrication approaches. 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions…

Bending Control of a 3D Printed Polyelectrolyte Soft Actuator with Uncertain Model

Sensors and Actuators A: Physical 2019

Introduction of 3-dimensional (3D) printing in fabrication and increasing applications of intriguing products in soft robotics have led to studies on controllable 3D printed soft actuators. Therefore, a demand for a precise and computationally efficient model for bending control of the 3D printed soft actuators has arisen. This study initially used a grey box strategy for dynamic modeling of a 3D printed soft actuator which undergoes large bending deformations. Yet, the primary model estimated results deviated from experimental results due to uncertainties such as hysteresis and time varying characteristics of the soft actuator in presence of electric field. Thus, a…

Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments

Bioprinting 2019

Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…